OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN 4413/MAE 4053 Automatic Control Systems Spring 2008

Midterm Exam #2

		,	•	r out of fi d below to	-	
	1)	; 2)	; ;3)	; 4)	;	
N	ame:_					
E-Mail Add	lress:_					

Problem 1:

The equations that describe the dynamics of a motor control system are

$$e_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + K_b \frac{d\theta_m(t)}{dt}$$

$$T_m(t) = K_i i_a(t)$$

$$T_m(t) = J \frac{d^2 \theta_m(t)}{dt^2} + B \frac{d\theta_m(t)}{dt} + K\theta_m(t)$$

$$e_a(t) = K_a e(t)$$

$$e(t) = K_s [\theta_r(t) - \theta_m(t)]$$

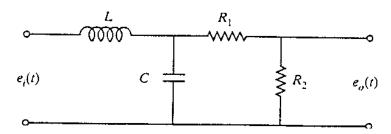
- a) Assign the state variables as $x_1(t) = \theta_m(t)$, $x_2(t) = d\theta_m(t)/dt$, and $x_3(t) = i_a(t)$. Express the state space representation in the form of $\frac{dx(t)}{dt} = Ax(t) + B\theta_r(t), \quad \theta_m(t) = Cx(t).$
- b) Develop a corresponding state diagram.
- c) Find the closed-loop transfer function, $H(s) = \Theta_m(s)/\Theta_r(s)$.

Problem 2:

For the circuit diagram shown below, derive its state space representation in the form of $\dot{x}(t) = Ax(t) + bu(t)$

$$y(t) = cx(t) + du(t)$$

where input $u(t) = e_i(t)$ and output $y(t) = e_o(t)$ is the voltage across the resistor R_2 . Develop a corresponding state diagram.



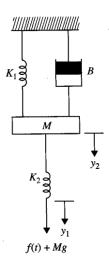
Problem 3:

For the mechanical system shown below, derive its state space representation in the form of

$$\dot{x}(t) = Ax(t) + bu(t)$$

$$y(t) = cx(t) + du(t)$$

where input is a force f(t) pulling mass M downward (i.e., u(t) = f(t)) and output $y(t) = y_2(t)$. Please ignore the effect of gravitational force, Mg. Develop a corresponding state diagram.



Problem 4: Given

$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

with
$$x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$
 and $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{otherwise} \end{cases}$. Find the solution, $x(t)$.

Problem 5:

Find the solution of $\dot{x}(t) = Ax(t) + Bu(t)$, where

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

with

th
$$x(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } u(t) = 1 \text{ for all } t \ge 0 \text{ (unit step function)}.$$